STP20NK50Z－STW20NK50Z

N－CHANNEL 500V－0．23－20A TO－220／TO－247 Zener－Protected SuperMESH ${ }^{\text {TM }}$ Power MOSFET

TARGET DATA

TYPE	V $_{\text {DSS }}$	R $_{\text {DS（on）}}$	I $_{\mathbf{D}}$	Pw
STP20NK50Z	500 V	$<0.27 \Omega$	20 A	190 W
STW20NK50Z	500 V	$<0.27 \Omega$	20 A	190 W

－TYPICAL RDS（on）$=0.23 \Omega$
－EXTREMELY HIGH dv／dt CAPABILITY
－100\％AVALANCHE TESTED
－GATE CHARGE MINIMIZED
－VERY LOW INTRINSIC CAPACITANCES
－VERY GOOD MANUFACTURING REPEATIBILITY

DESCRIPTION

The SuperMESH ${ }^{\text {TM }}$ series is obtained through an extreme optimization of ST＇s well established strip－ based PowerMESH ${ }^{\text {TM }}$ layout．In addition to pushing on－resistance significantly down，special care is tak－ en to ensure a very good dv／dt capability for the most demanding applications．Such series comple－ ments ST full range of high voltage MOSFETs in－ cluding revolutionary MDmesh ${ }^{\text {TM }}$ products．

APPLICATIONS

－HIGH CURRENT，HIGH SPEED SWITCHING
－IDEAL FOR OFF－LINE POWER SUPPLIES， ADAPTORS AND PFC

INTERNAL SCHEMATIC DIAGRAM

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP20NK50Z	P20NK50Z	TO－220	TUBE
STW20NK50Z	W20NK50Z	TO－247	TUBE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		STP20NK50Z	STW20NK50Z	
$\mathrm{V}_{\text {DS }}$	Drain-source Voltage ($\mathrm{V}_{\mathrm{GS}}=0$)	500		V
V ${ }_{\text {DGR }}$	Drain-gate Voltage ($\mathrm{RGS}=20 \mathrm{k} \Omega$)	500		V
V_{GS}	Gate- source Voltage	± 30		V
ID	Drain Current (continuos) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	20	20	A
ID	Drain Current (continuos) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	10	10	A
IDM (•)	Drain Current (pulsed)	64	64	A
Ртот	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	190	190	W
	Derating Factor	1.51	1.51	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD(G-S) }}$	Gate source ESD(HBM-C=100pF, R=1.5K 2)	4000		V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5		V/ns
$\begin{gathered} \hline \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\text {stg }} \end{gathered}$	Operating Junction Temperature Storage Temperature	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 150 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

(•) Pulse width limited by safe operating area
(1) ISD $\leq 20 \mathrm{~A}$, di/dt $\leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{JMAX}}$.
(*) Limited only by maximum temperature allowed

THERMAL DATA

		TO-220	TO-247	
Rthj-case	Thermal Resistance Junction-case Max	0.66	0.66	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb T_{I}	Thermal Resistance Junction-ambient Max Maximum Lead Temperature For Soldering Purpose	62.5	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{\circ} \mathrm{C}$				

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
$I_{\text {AR }}$	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_{j} max)	20	A
E_{AS}	Single Pulse Avalanche Energy (starting $\left.T_{j}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=I_{\text {AR }}, V_{D D}=50 \mathrm{~V}\right)$	TBD	mJ

GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{BV}_{\text {GSO }}$	Gate-Source Breakdown Voltage	Igs $= \pm 1 \mathrm{~mA}$ (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	500			V
I DSS						
	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=$ Max Rating $\mathrm{V}_{\mathrm{DS}}=$ Max Rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{GSS}}$	Gate-body Leakage Current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3	3.75	4.5	V
$\mathrm{R}_{\mathrm{DS}(o n)}$	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$		0.23	0.27	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
gfs (1)	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=8 \mathrm{~V}, \mathrm{l}$ = $=10 \mathrm{~A}$		TBD		S
$\begin{aligned} & \hline \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		$\begin{gathered} 2600 \\ 400 \\ 55 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Coss eq. (3)	Equivalent Output Capacitance	V GS $=0 \mathrm{~V}, \mathrm{~V}$ DS $=0 \mathrm{~V}$ to 400 V		TBD		pF

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\overline{\mathrm{t}_{\mathrm{d}(\mathrm{on})}} \mathrm{t}_{\mathrm{t}}$	Turn-on Delay Time Rise Time	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V} \mathrm{GS}=10 \mathrm{~V} \\ \text { (Resistive Load see, Figure 3) } \end{array}$		$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 95 \\ \text { TBD } \\ \text { TBD } \end{gathered}$		$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\text { off })}$	Turn-off Delay Time Fall Time	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V} \text { GS }=10 \mathrm{~V} \\ \text { (Resistive Load see, Figure 3) } \\ \hline \end{array}$		$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{tr}_{\mathrm{r}(\mathrm{Voff})} \\ \mathrm{t}_{\mathrm{f}} \\ \mathrm{t}_{\mathrm{c}} \end{gathered}$	Off-voltage Rise Time Fall Time Cross-over Time	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \text { (Inductive Load see, Figure 5) } \end{array}$		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \text { ISD } \\ \text { ISDM }^{2}(2) \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {SD }}$ (1)	Forward On Voltage	$\mathrm{ISD}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			TBD	V
$\begin{aligned} & \mathrm{t}_{\mathrm{rr}} \\ & \mathrm{Q}_{\mathrm{rr}} \end{aligned}$ IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \hline \mathrm{ISD}=20 \mathrm{~A}, \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see test circuit, Figure 5) } \end{aligned}$		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

Note: 1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
2. Pulse width limited by safe operating area.
3. $C_{\text {oss eq }}$. is defined as a constant equivalent capacitance giving the same charging time as $C_{o s s}$ when $V_{D S}$ increases from 0 to 80% VDSs.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.509
L2			16.4	14.0	0.511	
L4	13.0		2.95	0.104		0.116
L5	2.65		15.75	0.600		0.620
L6	15.25		6.6	0.244		0.260
L7	6.2		3.93	0.137		0.154
L9	3.5		3.85	0.147		0.151
DIA.	3.75					

TO-247 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.85		5.15	0.19		0.20
D	2.20		2.60	0.08		0.10
E	0.40		0.80	0.015		0.03
F	1		1.40	0.04		0.05
F1		3			0.11	
F2		2			0.07	
F3	2		2.40	0.07		0.09
F4	3		3.40	0.11		0.13
G		10.90			0.43	
H	15.45		15.75	0.60		0.62
L	19.85		20.15	0.78		0.79
L1	3.70		4.30	0.14		0.17
L2		18.50			0.72	
L3	14.20		14.80	0.56		0.58
L4		34.60			1.36	
L5		5.50			0.21	
M	2		3	0.07		0.11
V		50			50	
V2				3.65	0.14	
Dia	3.55					0.143

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

